Как и сохранение импульса, сохранение момента играет важную роль во всех явлениях от субатомных до космологических масштабов. В любой изолированной системе момент импульса должен сохраняться. Если в описании любого процесса, связанного с сохранением импульса, заменить расстояние на угол, а скорость на угловую скорость, мы получим описание для процесса, связанного с сохранением момента. Это прекрасный пример творческого плагиата.
Ещё один пример. Когда один вагон сталкивается с другим, находящимся в состоянии покоя, и вагоны сцепляются вместе, так что дальше оба вагона движутся как единое целое, они движутся медленнее, чем первый вагон до столкновения. Это классическое следствие сохранения импульса. Суммарный импульс двух сцепленных вагонов должен быть таким же, как и до столкновения. Поскольку совокупная масса сцепки больше, чем масса первого вагона, который двигался, сцепка из двух вагонов должна двигаться медленнее, чем первоначально двигался один вагон.
А теперь рассмотрим фигуристку, вращающуюся вокруг вертикальной оси с прижатыми к телу руками. Когда она расправляет руки, её вращение замедляется, как по мановению волшебной палочки. Этот пример демонстрирует следствие сохранения момента импульса, так же как предыдущий пример демонстрировал следствие сохранения импульса. Продолжая аналогию, можно сказать, что тело большего радиуса ведёт себя в отношении вращения, как тело с большей массой — в отношении движения. Расправляя руки, фигуристка как бы увеличивает радиус своего тела. И подобно тому, как два сцепленных вагона начинают двигаться медленнее, чем до столкновения двигался один, так и фигуристка, увеличивая размах рук, начинает вращаться медленнее, чем она вращалась, прижав руки к телу. И наоборот, начав вращение с раскинутыми в стороны руками, фигуристка может ускорить вращение, прижав руки к телу. Так закон сохранения момента импульса помогает фигуристам завоёвывать олимпийские медали.
В природе есть и другие сохраняющиеся величины, законы сохранения которых возникают из симметрии, отличных от пространственно-временных. К таким величинам относится, например, электрический заряд. Я вернусь к этому позже. Сейчас же попробуем разобраться с ещё одним странным аспектом инвариантности законов природы относительно поворота. Он имеет отношение к одной особенности инвариантности вращения, которая проявляется не всегда. Например, несмотря на то что основные законы движения инвариантны относительно поворота, то есть не существует предпочтительного направления, в котором бы законы выполнялись как-то иначе, чем в остальных, мир относительно поворота не инвариантен. Если бы он был инвариантен, мы не смогли бы дойти даже до продуктового магазина, потому что все направления были бы для нас одинаковыми. Но «лево» выглядит иначе, чем «право», «север» отличается от «юга», «верх» от «низа».
Проще всего объяснить это простым стечением обстоятельств, тем более что так оно и есть. Если бы мы жили в другом месте, то различия между правым и левым, югом и севером были бы для нас совершенно другими. Тем не менее сам факт, что случайное стечение обстоятельств может скрыть от нас фундаментальные симметрии мира, является одной из наиболее важных идей, направляющих развитие современной физики. Чтобы использовать всю мощь таких симметрии, мы должны копать глубже.
Многие из классических примеров скрытой реальности, о которых я рассказывал в предыдущей главе, связаны с идеей, что симметрия может быть скрытой. Эта идея получила настораживающее имя:
Хорошим примером служит поведение микроскопических «магнитиков» в куске железа, о котором я рассказывал в конце предыдущей главы. При низкой температуре, когда отсутствует внешнее магнитное поле, эти «магнитики», выбирая наиболее энергетически выгодное состояние, выстраиваются в одном направлении, но само направление выбирается случайным образом. В физике электромагнетизма нет ничего, что определяло бы это направление, его нельзя предсказать заранее. Но после того, как направление выбрано, оно приобретает уникальность. Насекомое, чувствительное к магнитным полям, живя внутри такого магнита, будет чувствовать анизотропию своего мира, для него направления на северный полюс магнита и на южный полюс магнита будут выделенными, отличающимися от остальных направлений.
Физический подход позволяет подняться выше случайных, уникальных обстоятельств нашего собственного существования и попытаться выглянуть за их пределы. Во всех известных мне случаях это предполагает поиск истинной симметрии мира. В приведённом выше примере это будет означать, что уравнения, описывающие магнитное поле, должны быть инвариантны относительно поворота, то есть они не должны меняться в случае изменения направления магнитного поля.
Аналогичная ситуация возникает при объединении электромагнитных и слабых взаимодействий. Лежащая в основе электрослабой теории физика не делает различий между безмассовыми фотонами и очень массивными Z-бозонами. В действительности, существует глубоко запрятанная симметрия, при которой Z-бозон можно заменить на фотон, и всё будет выглядеть точно так же. В мире же, в котором мы живём, у описывающих эти частицы фундаментальных уравнений существуют конкретные решения, содержащие конденсат виртуальных частиц, заполняющий пустое пространство, взаимодействуя с которым фотон и Z-бозон ведут себя совершенно по-разному.
На языке математики эти результаты можно изложить следующим образом: конкретное решение математического уравнения не обязано сохранять инвариантность относительно тех преобразований, для которых являются инвариантными сами исходные уравнения. Любые конкретные реализации базовой математической модели, например описание реального окружающего нас физического мира, могут нарушать связанную с этой моделью симметрию. Рассмотрим прекрасный пример спонтанного нарушения симметрии, предложенный физиком Абдусом Саламом, одним из лауреатов Нобелевской премии за объединение электромагнитного и слабого взаимодействия.
Представьте себе полностью симметричный сервированный круглый обеденный стол. Между тарелками на этом столе стоят рюмки, причём расстояние от каждой рюмки до правой тарелки равно расстоянию до левой тарелки. Ничто, кроме правил этикета (которые я никак не могу запомнить), не указывает на то, какую рюмку следует выбрать: правую или левую. Но как только кто-нибудь один из гостей делает свой выбор, скажем берёт левую рюмку, все остальные оказываются вынужденными последовать его примеру, в противном случае у кого-то из гостей окажется две рюмки, а у кого-то — ни одной. В отношении реального физического мира можно сказать, что мы случайным образом оказались в какой-то одной из огромного количества его возможных реализаций. Перефразируя Руссо: мир был рождён свободным, но он повсюду скован цепями!
Почему же нас должны волновать существующие в природе симметрии, даже те, которые не проявляются явно в нашем мире? Может быть, тяга к симметриям — это всего лишь извращённая потребность физиков испытывать странное эстетическое удовольствие от подобной интеллектуальной мастурбации? Частично да. Но есть ещё одна причина. Симметрии, даже те, которые непосредственно не проявляются, позволяют полностью определить набор физических величин, необходимых для описания природы, и динамические отношения между этими величинами. Короче, вся физика может в итоге оказаться не более как набором симметрии и больше ничем.
Возьмём, к примеру, энергию и импульс, сохранение которых является прямым следствием двух пространственно-временных симметрии. Эти две симметрии достаточны для описания движения тел в гравитационном поле Земли, полностью эквивалентного описанию, получающемуся на основании законов Ньютона. Вся динамика, например тот факт, что сила приводит к ускорению, следует из этих двух симметрии. Симметрии даже определяют характер фундаментальных взаимодействий, о чём я скоро расскажу.
Симметрия говорит нам, какие переменные необходимы для описания мира. Как только список переменных определён, построение теории остаётся делом техники. Возьмём снова моего любимого сферического коня. Представляя коня в виде сферы, я ограничиваю круг тех физических процессов, которые буду рассматривать, только теми, которые зависят исключительно от расстояния до центра коня и больше ни от чего. Всё, что явно зависит от направления, должно быть удалено из описания, поскольку все направления из центра для сферы идентичны. Совершенная симметрия сферы превратила задачу с потенциально большим количеством параметров в задачу с единственной переменной — радиусом.
Можно подойти с другой стороны. Если бы мы сумели выделить переменные, необходимые для надлежащего описания какого-то физического процесса, то затем, если мы достаточно умны, мы могли бы попробовать угадать, какие внутренние симметрии связаны с этими переменными. Эти симметрии, в свою очередь, могли бы помочь нам сформулировать все законы, отвечающие за процесс. Вспомним Галилея. Он показал, что изучение того,
Вернёмся к фейнмановской аллегории природы как больших шахмат, в которые играют боги, за игрой которых мы имеем честь наблюдать. Правила игры мы называем фундаментальными законами физики, и наша цель — понять эти правила. Фейнман утверждал, что понимание этих правил — это всё, на что мы имеем право надеяться, собираясь понять природу. Но я думаю, сегодня мы имеем право претендовать на ещё один шаг вперёд. Мы подозреваем, что эти правила могут быть полностью установлены путём простого изучения симметрии «фигур» и «доски». Таким образом, чтобы понять природу, то есть чтобы понять правила игры, достаточно понять её симметрию.
Это очень сильное утверждение и вместе с тем очень общее. Я предполагаю, что вы сейчас испытываете одновременно скепсис и растерянность, поэтому приведу несколько примеров, которые помогут прояснить ситуацию. В процессе я надеюсь дать некоторое представление о том, как физика расширяет свои границы.
Итак, вернёмся к фейнмановской аналогии. Шахматная доска представляет собой довольно симметричный объект. Узор доски переходит сам в себя при пространственной трансляции. Клетки доски окрашены в два цвета, и, если мы поменяем цвета местами, узор останется тем же самым. Кроме того, доску размером 8×8 можно разделить на две половины, и если потом эти половины поменять местами, то внешний вид доски тоже не изменится.
Одной этой симметрии ещё недостаточно, чтобы установить правила шахматной игры, потому что на той же самой доске можно играть, например, в шашки. Однако если к указанной симметрии добавить факт наличия на доске тридцати двух фигур, разделённых на два множества, в каждом из которых есть восемь одинаковых фигур (пешки), три парные фигуры (кони, слоны и ладьи) и две уникальные (ферзь и король), произвол в определении правил уменьшится. Например, можно подметить зеркальную симметрию в расположении ладей, коней и слонов, которые стоят симметрично относительно центральной линии. Противоположные цвета фигур противников напоминают о противоположных цветах разных клеток доски. Кроме того, набор ходов всех шахматных фигур согласуется с простым набором движений, допускаемых структурой доски. Движение слона, ходящего только по диагонали, ограничивается возможностью двигаться только по клеткам одного цвета. Пешка может «взять» другую фигуру, только если та находится на клетке того же цвета по диагонали от пешки, и так далее. Я никоим образом не утверждаю, что правила шахматной игры полностью определяются симметрией доски и фигур; стоит отметить, что, хотя ФИДЕ признаёт только один вариант игры, в пределах описанных симметрии существует множество её неофициальных вариаций
Можно задаться аналогичным вопросом относительно любого другого вида спорта. Остались бы правила футбола теми же самыми, если бы игроки играли не на 100-метровом, а на 10-метровом поле? Как зависят правила от симметрии в отношении играющих команд? Или, например, что будет, если поле для игры в бейсбол будет иметь форму пятиугольника? Потребуется ли вам четыре «аута»?